Models to Measure Students’ Learning in Computer Science

As computer science becomes integrated into K-12 education systems worldwide, educators and researchers continuously search for effective methods to measure and understand students’ learning levels in this field. The challenge lies in developing reliable and comprehensive assessment models that accurately and discreetly gauge student learning. Teachers must assess learning to support students’ educational needs better. Similarly, students and parents expect schools to document students’ proficiency in computing and their practical application. Unlike conventional subjects such as math and science, very few relevant assessments are available for K-12 CS education. This article explores specific models used to measure knowledge in various CS contexts and then examines several examples of student learning indicators in computer science.

Randomized Controlled Trials and Measurement Techniques

An innovative approach to measuring student performance in computer science education involves evaluating the effectiveness of teaching parallel programming concepts. Research by Daleiden et al. (2020) focuses on assessing students’ understanding and application of these concepts.

The Token Accuracy Map (TAM) technique supplements traditional empirical analysis methods, such as timings, error counting, or compiler errors, which often need more depth in analyzing the cause of errors or providing detailed insights into specific problem areas encountered by students. The study applied TAM to examine student performance across two parallel programming paradigms: threads and process-oriented programming based on Communicating Sequential Processes (CSP), measuring programming accuracy through an automated process.

The TAM approach analyzes the accuracy of student-submitted code by comparing it against a reference solution using a token-based comparison. Each element of the code, or “token,” is compared to determine its correctness, and the results are aggregated to provide an overall accuracy score ranging from 0% to 100%. This scoring system reflects the percentage of correctness, allowing for a detailed examination of which students intuitively understand specific elements of different programming paradigms or are more likely to implement them correctly.

This approach extends error counts, offering insights into students’ mistakes at a granular level. Such detailed analysis enables researchers and educators to identify specific programming concepts requiring further clarification or alternative teaching approaches. Additionally, TAM can highlight the strengths and weaknesses of different programming paradigms from a learning perspective, thereby guiding curriculum development and instructional design.

Competence Structure Models in Informatics

Torsten et al. (2015) introduced a new model in their discussion aimed at developing a competence structure model for informatics with a focus on system comprehension and object-oriented modelling. This model, part of the MoKoM project (Modeling and Measurement of Competences in Computer Science Education), seeks to create a competence structure model that is both theoretically sound and empirically validated. The project’s goals include identifying essential competencies in the field, organizing them into a coherent framework, and devising assessments to measure them accurately. The study employed the Item Response Theory (IRT) evaluation methodology to construct the test instrument and analyze survey data.

The initial foundation of the competence model was based on theoretical concepts from international syllabi and curricula, such as the ACM’s “Model Curriculum for K-12 Computer Science” and expert papers on software development. This framework encompasses cognitive and non-cognitive skills pertinent to computer science, especially emphasizing system comprehension and object-oriented modelling.

The study further included conducting expert interviews using the Critical Incident Technique to validate the model’s applicability to real-world scenarios and its empirical accuracy. This method was instrumental in pinpointing and defining the critical competencies needed to apply and understand informatics systems. It also provided a detailed insight into student learning in informatics, identifying specific strengths and areas for improvement.

Limitations

The limitation of this approach is its specificity, which may hinder scalability to broader contexts or different courses. Nonetheless, the findings indicate that detailed, granular measurements can offer valuable insights into the nature and types of students’ errors and uncover learning gaps. The resources mentioned subsequently propose a more general strategy for assessing learning in computer science.

Evidence-centred Design for High School Introductory CS Courses

Another method for evaluating student learning in computer science involves using Evidence-Centered Design (ECD). Newton et al. (2021) demonstrate the application of ECD to develop assessments that align with the curriculum of introductory high school computer science courses. ECD focuses on beginning with a clear definition of the knowledge, skills, and abilities students are expected to gain from their coursework, followed by creating assessments that directly evaluate these outcomes.

The approach entails specifying the domain-specific tasks that students should be capable of performing, identifying the evidence that would indicate their proficiency, and designing assessment tasks that would generate such evidence. The model further includes an analysis of assessment items for each instructional unit, considering their difficulty, discrimination index, and item type (e.g., multiple-choice, open-ended, etc.). This analysis aids in refining the assessments to gauge student competencies and understanding more accurately.

This model offers a more precise measurement of student learning by ensuring that assessments are closely linked to curriculum objectives and learning outcomes.

Other General Student Indicators

The Exploring Computer Science website, a premier resource for research on indicators of student learning in computer science, identifies several key metrics for understanding concepts within the field:

  • Student-Reported Increase in Knowledge of CS Concepts: Students are asked to self-assess their knowledge in problem-solving techniques, design, programming, data analysis, and robotics, rating their understanding before and after instruction.
  • Persistent Motivation in Computer Problem Solving: This self-reported measure uses a 5-point Likert scale to evaluate students’ determination to tackle computer science problems. Questions include, “Once I start working on a computer science problem or assignment, I find it hard to stop,” and “When a computer science problem arises that I can’t solve immediately, I stick with it until I find a solution.”
  • Student Engagement: This metric again relies on self-reporting to gauge a student’s interest in further pursuing computer science in their studies. It assesses enthusiasm and inclination towards the subject.
  • Use of CS Vocabulary: Through pre- and post-course surveys, students respond to the prompt: “What might it mean to think like a Computer Scientist?”. Responses are analyzed for the use of computer science-related keywords such as “analyze,” “problem-solving,” and “programming.” A positive correlation was found between CS vocabulary use and self-reported CS knowledge levels.

Comparing the Models

Each model discussed provides distinct benefits but converges on a shared objective: to gauge precisely students’ understanding of computer science. The Evidence-Centered Design (ECD) model is notable for its methodical alignment assessments with educational objectives, guaranteeing that evaluations accurately reflect the intended learning outcomes. Conversely, the randomized controlled trial and innovative measurement technique present a solid approach for empirically assessing the impact of instructional strategies on student learning achievements. Finally, the competence structure model offers an exhaustive framework for identifying and evaluating specific competencies within a particular field, like informatics, ensuring a thorough understanding of student abilities. As the field continues to evolve, so will our methods for measuring student success.

References

Daleiden, P., Stefik, A., Uesbeck, P. M., & Pedersen, J. (2020). Analysis of a Randomized Controlled Trial of Student Performance in Parallel Programming using a New Measurement Technique. ACM Transactions on Computing Education20(3), 1–28. https://doi.org/10.1145/3401892

Magenheim, J., Schubert, S., & Schaper, N. (2015). Modelling and measurement of competencies in computer science education. KEYCIT 2014: key competencies in informatics and ICT7(1), 33-57.

Newton, S., Alemdar, M., Rutstein, D., Edwards, D., Helms, M., Hernandez, D., & Usselman, M. (2021). Utilizing Evidence-Centered Design to Develop Assessments: A High School Introductory Computer Science Course. Frontiers in Education6. https://doi.org/10.3389/feduc.2021.695376

Teaching Computer Science with Minecraft

Introduction to Minecraft

Minecraft is currently one of the most popular games of 2023, boasting over 140 million monthly active users, according to searchlogistics.com. Despite this popularity, many players overlook that Minecraft offers an engaging and immersive environment for learning terminal commands, programming basics, computational thinking, and even artificial intelligence. ISTE standard 4.3a for coaches indicates that a successful coach should “Establish trusting and respectful coaching relationships that encourage educators to explore new instructional strategies.” So, in this blog post, I will delve into the educational benefits of Minecraft and explore the differences between the Java and Education editions.

While Minecraft is often regarded as merely a game, educators have recognized its potential as a valuable learning tool. At its core, Minecraft is built upon programming concepts. Players use blocks made of various materials to construct anything they can imagine, from simple houses to complex machines that require advanced knowledge of electronics, chemistry, and physics. This encourages computational thinking, creativity, and problem-solving as students work to bring their visions to life.

Concerning programming, Minecraft helps teach fundamental coding concepts, including commands, functions, variables, loops, and conditionals. Students can employ block-based coding or full-fledged programming languages such as Python and JavaScript to automate actions within the game. This hands-on approach to learning captivates students more effectively than traditional coding lessons, as Minecraft provides them with an imaginative space to immediately apply their newfound skills. Creating Minecraft modifications (mods) teaches students how to extend existing programs, a critical programming skill.

Minecraft Versions

Several versions of Minecraft are available for players to choose from, including Minecraft: Java Edition, Minecraft: Bedrock Edition, Minecraft: Education Edition, and Minecraft: Pocket Edition. However, for the specific purpose of our educational analysis, we will concentrate solely on the Java and Education editions. These two versions offer unique features and opportunities for learning that make them particularly relevant in an educational context.

Minecraft: Java Edition

The Java Edition is the original version of Minecraft developed in 2009 by Mojang Studios for Windows, macOS, and Linux, and maintains its popularity among long-time Minecraft players.

The Java Edition offers distinct advantages when teaching advanced computer science concepts due to its “mod-ability” and access to the source code of the game environment. The semi-open-source nature of the Java Edition allows for limitless customization through mods and plugins. Writing mods can illustrate a wide range of advanced programming concepts, including event handling, parallel programming, algorithms, data structures, debugging, and software design patterns. Developing mods not only imparts practical software development skills but also encourages students to show their creativity.

The Minecraft community has produced numerous mods that cater to various lesson plans. For instance, ComputerCraft introduces programmable turtle robots, while RedstonePlus enhances the game with advanced circuitry. The diversity of available mods supports a wide range of educational objectives, not only in CS but other disciplines.

Minecraft: Education/Bedrock Edition

Minecraft: Bedrock Edition was initially released in August 2011 and is particularly advantageous for classrooms with various devices. Bedrock Edition supports mobile devices such as iPads and Android tablets, which many schools already incorporate into their teaching environments. This enables students to start their Minecraft lessons on a classroom desktop computer during the day and seamlessly continue playing on their smartphones or game consoles at home.

However, Bedrock Edition offers less mod support and limited access to code customization. Minecraft Education Edition is a version of Bedrock specifically tailored for classroom use. According to Microsoft, it “typically runs about one full version behind the current Minecraft Bedrock production version” (FAQ: Game Features, 2023).

Advantages of Minecraft Education in the Classroom

One of the most significant advantages of Minecraft Education in a computer science course is its block-based CodeBuilder / MakeCode editor, similar to Scratch or Snap. This editor allows students to drag and drop commands to perform actions in the game. Younger students can learn coding logic and structure by creating houses, gardens, and machines using these visual blocks before transitioning to text-based programming languages like Python or JavaScript.

Another advantage of Education Edition is the teachers’ ability to implement special restrictions, such as limiting chat or preventing students from destroying blocks. These classroom controls create a safe environment for student exploration. Teachers can also switch to spectator mode to observe students and provide feedback; they also have the capability to build worlds and restrict access as needed. Here is a quick start guide for reference.

The Education Edition library offers hundreds of pre-made interactive worlds and lesson plans aligned with computer science curriculum standards (source: https://education.minecraft.net/en-us/resources/computer-science-subject-kit). Teachers can find lesson plans tailored to any grade level, making it much easier for educators to get started with Minecraft compared to building worlds from scratch.

According to research by Bile (2022), their study found that children aged 8 to 10 in a Minecraft education setting were able to solve abstract and complex scientific problems without prior prompting or theoretical knowledge. The game format also helped students retain knowledge better. Vostinar & Dobrota (2022) similarly found that in a primary school class, even though the majority of students had not programmed before in block or Python, they found the lesson enjoyable and easy. Furthermore, according to Nika Klimová et al. (2021), girls in grades 5-10 typically outperform boys in Minecraft education coding challenges, suggesting it may be a valuable tool for increasing diversity in computer science.

Disadvantages of Minecraft

As Vostinar & Dobrota (2022, p. 652) pointed out, there are significant disadvantages to using Minecraft in education. One such drawback is that Minecraft is not free and requires an additional cost per student, which, as mentioned in my previous post, raises ethical concerns about the practice of making students pay for educational software. Another disadvantage is that Minecraft may only appeal to a certain type of student, particularly those with a more creative inclination, potentially excluding students who do not have an affinity for the game.

Furthermore, teachers must become proficient in the game’s mechanics and capabilities to integrate it into the classroom effectively. Given the abundance of “cheats” in Minecraft, more experienced players may find trivial command-line solutions to problems if the teacher is unaware of their existence. Finally, as highlighted by Vostinar & Dobrota (2022), it’s essential to impose adequate constraints on the virtual world, especially when students collaborate, to prevent them from destroying the world with TNT blocks and other mining tools.

References:

Vostinar, P., & Dobrota, R. (2022). Minecraft as a Tool for Teaching Online Programming. 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO). https://doi.org/10.23919/mipro55190.2022.9803384

Bile, A. (2022). Development of intellectual and scientific abilities through game-programming in Minecraft. Education and Information Technologies, 1–16. https://doi.org/10.1007/s10639-022-10894-z

Nika Klimová, Jakub Sajben, & Lovászová, G. (2021). Online Game-Based Learning through Minecraft: Education Edition Programming Contest. https://doi.org/10.1109/educon46332.2021.9453953

FAQ: Game Features. (2023, September 15). Minecraft Education. https://educommunity.minecraft.net/hc/en-us/articles/360047117692-FAQ-Game-Features

Culturally Responsive Computing Approaches

Introduction

Culturally responsive computing (CRC) is an approach to designing technology education programs and tools that responds to the cultural contexts of learners and represents an intersection between computer science, education, and sociocultural understanding. It has roots in the extensive and well-studied area of culturally responsive teaching (CRT), which argues that empowering diverse students requires building on the cultural assets they bring to the classroom. CRC translates fundamental principles of CRT to computer science education and ensures that the cultural experiences of learners, particularly those from underrepresented groups, are valued and used to enhance their learning experience. In this blog post, I will uncover some examples of research that has established the critical role CRC plays in promoting inclusion, diversity, and equity in the computer science classroom.

History of CRC

Foundational concepts for CRC were established between the early and mid-1990s. Henderson (1996) argued that instructional design models for teaching technology must consider diverse learners’ cultural orientations. Henderson proposed the Multiple Cultural Model for instructional design, which sheds light on the various dimensions that influence how diverse cultural groups interact with multimedia learning environments. For instance, some cultures might lean towards cooperative learning, while others favour competition.

In 1999, McLoughlin outlined features necessary for culturally appropriate online learning for Indigenous Australian students, emphasizing participatory tasks and problem-based dialogue. Subsequently, Lee (2003) presented a framework designed to ensure that computing tools and environments respond effectively to the prior knowledge, perspectives, and motivations of minority learners. This framework was shown through software that facilitated literacy development among African American students, thereby demonstrating the effectiveness of this approach.

Limitations of the CRC Framework

Drawing on their programs, Scott, Sheridan, and Clark (2014) implemented their unique CRC programs, critiquing the limitations of traditional asset-based approaches and advocating for direct cultural responsiveness. Their arguments highlighted the following points:

  1. All youth possess the capability for digital innovation, thereby challenging deficit perspectives.
  2. Learning environments should promote transformational uses of technology.
  3. Paying attention to intersectional identities can foster innovation in computing.
  4. Students should utilize technology to reflect on their complex identities.
  5. Success should be defined by creating for community benefit rather than merely acquiring skills.

They provided examples such as critiquing biased media representations and encouraging students to create media that affirmed their identities. The implications of their arguments include the need to revise methods and measures, conduct intersectional research, and promote collaboration between computer experts and communities. CRC can potentially address digital equity through innovation, especially when implementations consider students’ multifaceted identities.

Culturally Responsive Computing Tools

Reflecting on these limitations, Morales-Chicas et al. (2019) conducted a comprehensive study on the tools and strategies employed in K-12 computing education for CRC. They identified the following emergent themes:

The first was sociopolitical consciousness-raising, which pertains to lessons that address real-world issues and promote activism. For example, COMPUGIRLS is a CRC program for adolescent girls of colour from underserved communities. Drawing on principles of culturally responsive teaching, including asset building, connectedness, and reflection, the program equips girls with the technological skills needed to research and address community issues. Participants reported increased confidence, the development of identities as technology innovators, and a feeling of empowerment from creating projects that address social justice issues.

Another theme is incorporating heritage culture through artifacts, like designs and symbols. Examples include programs encouraging student-created media to challenge stereotypes and software that builds on cultural practices, such as hair braiding patterns (Eglash & Bennett, 2009). This builds community connections, which involve community members sharing cultural knowledge and motivating students to engage actively.

Vernacular culture employs local cultural practices that are relevant to students. An example is the American Distributed Multiple Learning Styles Systems (AADMLSS), a programming tool designed to engage African American students using math and characters representing their vernacular culture. Studies have shown a surge in youth engagement due to the high cultural relevance of this approach.

Lastly, the theme of lived experiences connects to students’ identities and real-world contexts. For instance, Scott & White (2013) argued that CRC should consider students’ lived experiences and encourage self-representation, evidenced by a youth exercise in COMPUGIRLS on identifying gender biases in avatar creation. Also, by introducing personalized elements into a course, students can analyze this aspect of the computing experience critically, further enabling the customization of computing projects.

Conclusions

Studies have scrutinized the implications of the developments in CRC. For assessment, this necessitates a move beyond narrow measures such as grades or test scores to capture complex identity outcomes (Scott & White, 2013). From a methodological perspective, it requires attention to intersectionality, considering how factors such as race, gender, and class shape technology experiences (Scott, Sheridan & Clark, 2014), more research is required to understand its effects on diverse populations and domains. In practice, CRC should adopt a multi-disciplinary stance, adopting collaboration between communities, social scientists, and computer scientists (Eglash et al., 2013).

Therefore, we call on computer science educators, tech companies, and community organizations to take the following actions:

  • Allow greater curriculum flexibility for CS instructors to adapt courses to their students’ cultures and identities, to discover the intersects for each student.
  • Develop alternative metrics focused on identity development, community impact, and equitable outcomes to complement skills-based measures.
  • Increase engagement of families and communities as partners in developing computing programs.
  • To exchange knowledge, Foster collaboration (through incentives) between tech companies, social scientists, and CS educators.

References

McLoughlin, C. (1999). Culturally responsive technology use: developing an on‐line community of learners. British Journal of Educational Technology30(3), 231–243. https://doi.org/10.1111/1467-8535.00112

Lee, C. D. (2003). Toward A Framework for Culturally Responsive Design in Multimedia Computer Environments: Cultural Modeling as a Case. Mind, Culture, and Activity10(1), 42–61. https://doi.org/10.1207/s15327884mca1001_05

Henderson, L. (1996). Instructional design of interactive multimedia: A cultural critique. Educational Technology Research and Development44(4), 85–104. https://doi.org/10.1007/bf02299823

Morales-Chicas, J., Castillo, M., Bernal, I., Ramos, P., & Guzman, B. (2019). Computing with Relevance and Purpose: A Review of Culturally Relevant Education in Computing. International Journal of Multicultural Education21(1), 125. https://doi.org/10.18251/ijme.v21i1.1745

Eglash, R., & Bennett, A. (2009). Teaching with Hidden Capital: Agency in Children’s Computational Explorations of Cornrow Hairstyles. Children, Youth and Environments19(1), 58–73. https://doi.org/10.1353/cye.2009.0024

Scott, K. A., & White, M. A. (2013). COMPUGIRLS’ Standpoint. Urban Education48(5), 657–681. https://doi.org/10.1177/0042085913491219

Scott, K. A., Sheridan, K. M., & Clark, K. (2014). Culturally responsive computing: a theory revisited. Learning, Media and Technology40(4), 412–436. https://doi.org/10.1080/17439884.2014.924966

Incorporating Competitive Programming into a Beginner Programming Course

Introduction

Driven by the increasing automation and digitalization of virtually every workflow, programming has become an indispensable part of our lives. As a result, introducing programming at the earliest stage of education has become a hot topic of discussion among educators and academics alike.

A particular area of interest is the concept of competitive programming (CP). Long viewed as a niche domain, a small group of enthusiasts often pursue CP to challenge their coding capabilities; many faculty have challenged the area as an unnecessary part of computer science. However, recent research underscores the potential of competitive programming as a useful pedagogical tool, especially in the context of introductory programming courses. This blog post will discuss the results of various studies that have been conducted on incorporating CP into a beginner’s programming course. I’ll review existing studies on integrating CP into intro-level programming courses, examining its effects on learning outcomes, student engagement, and skill acquisition. In addition, I will also propose some areas of CP that require further research.

Understanding Competitive Programming

Competitive programming is a mind sport, like chess and bridge, that involves participants competing to solve algorithmic problems as quickly and efficiently as possible. The ACM ICPC (Association for Computing Machinery – International Collegiate Programming Contest) is one of the world’s oldest, largest, and most prestigious programming contests, which started in the 1970s. Today, it has grown to involve tens of thousands of participants, attracting the world’s top Computer Science universities.

Several elements define each problem in the contest. First, there’s a problem statement describing the issue the team needs to solve. Next are the input and output specifications, which explain the type of data the team’s program should accept and produce. Thirdly, sample inputs and outputs are given to help the team understand the problem. Finally, constraints are provided to outline the maximum size or other limitations of the inputs and the required efficiency of the solution.

The contest is scored based on the number of problems solved and the time penalty. The number of problems solved is the most critical factor; the more problems a team solves, the higher their rank will be. Teams are primarily ranked by the number of problems they have solved. To break ties among teams who have solved the same number of problems, the ICPC uses a time penalty calculated from the beginning of the contest to the time of the first correct submission, with an additional penalty added for each incorrect submission. The team with the shortest total time is ranked highest.

The Impact of Competitive Programming on Beginners

Studies such as those conducted by Moreno et al. (2018) and Bandeira et al. (2019) employed this scoring system and contest setup to engage first-year students in programming classes. Both studies found that students introduced to competitive programming in their first year demonstrated a superior understanding of programming principles compared to those who did not. These students exhibited faster problem-solving abilities, improved code efficiency, and an increased capacity to work under pressure. Additionally, these students reported higher retention of material and reduced difficulty in grasping programming concepts.

However, not all studies concluded that CP led to improved performance. Coore and Fokum (2019), facing a lack of teaching assistants and quality feedback in first-year programming courses, employed a system of weekly competitive programming competitions to reinforce the week’s material. Their study found that while using competitive programming in assessments did increase student engagement and interest, it did not enhance the overall performance of the first-year students.

The Challenges

While CP introduces students to the rigours and excitement of coding under constraints, it’s important to recognize that CP cannot address every aspect of introductory programming. Also, certain facets of CP, such as its pace and competitive element, may only suit some learners.

Astrachan (2004) has pointed out that competitive programming only allows students to delve into key areas such as Object-Oriented Programming (OOP) design principles and enhancing code quality. CP emphasizes speed and efficiency, often overlooking the importance of well-structured, maintainable code, a crucial aspect in real-world development.

While competitive programming can inject a sense of competition into the classroom, it’s important to remember that it’s not a one-size-fits-all solution. The competitive aspect of CP may be intimidating for some students, leading to heightened anxiety and stress. This could, in turn, hinder learning and deter participation. Moreover, the pace of competitive programming, which requires swift comprehension of problem statements and speedy code implementation, may only cater to some learning styles. Some students may require more time to thoroughly grasp concepts and develop robust solutions, which could make the fast-paced environment of CP feel overwhelming.

Given these characteristics of CP, it’s clear that it should not be used as the sole determinant in course assessments. Relying too heavily on CP for grading could inadvertently favour students who possess abilities unrelated to computer science, such as high reading speed and fast typing. These intangibles can be advantageous in a competitive programming environment but have little relevance to a student’s understanding of computer science principles or their potential as a programmer.

Future of Competitive Programming in Classrooms

Although much research has been done involving introducing competitive programming into the classroom, little work explores the impact of cultural relevance in problem-setting, the role of artificial intelligence (AI) in integrating CP, and how CP interacts with various cultural and social intersections in the academic sphere.

The classroom is often characterized by a variety of cultural and social intersections. Incorporating CP in such a setting prompts us to consider how it might affect the likeability, acceptability, and academic performance across these intersections. Is CP equally appealing and accessible to students of different cultures, genders, or social backgrounds? How might the competitive nature of CP impact the dynamics of these intersections? Delving into these questions would allow us to devise strategies to ensure a more equitable and inclusive learning environment.

A unique feature of competitive programming is its creative liberty in problem-setting. This opens the possibility of integrating culturally relevant problems. Introducing programming problems referencing students’ home countries or cultures could make the learning experience more relatable and be a powerful tool to increase engagement among international students. However, the impact of such an approach is yet to be fully understood. How might culturally sensitive problems influence students’ interest and engagement? Could they enhance learning outcomes, or could they unintentionally alienate students who do not share the same cultural background?

Artificial Intelligence offers exciting possibilities in CP. For instance, large language models such as ChatGPT can assist in problem setting, which is typically a significant demand on an instructor’s time. AI-based tools could also serve as programming partners for first-year students, providing personalized assistance such as debugging help or hints for specific problems during a contest. This could supplement the responses from auto-grading judges, which is currently limited to categorized feedback that can sometimes be vague. This approach increases access to individualized learning support and mitigates common challenges associated with competitive programming, such as anxiety and intimidation. However, areas that require further exploration include the effectiveness of such tools and the best strategies for integrating them into the learning experience.

References

Moreno, J., & Pineda, A. F. (2018). Competitive programming and gamification as strategy to engage students in computer science courses. Revista ESPACIOS39(35).

Bandeira, I. N., Machado, T. V., Dullens, V. F., & Canedo, E. D. (2019, October 1). Competitive programming: A teaching methodology analysis applied to first-year programming classes. IEEE Xplore. https://doi.org/10.1109/FIE43999.2019.9028518

Astrachan, O. (2004). Non-competitive programming contest problems as the basis for just-in-time teaching. https://doi.org/10.1109/fie.2004.1408553

Coore, D., & Fokum, D. (2019). Facilitating Course Assessment with a Competitive Programming Platform. Proceedings of the 50th ACM Technical Symposium on Computer Science Education. https://doi.org/10.1145/3287324.3287511

Using Discord in the Classroom

Introduction

The education sector has undergone a tremendous shift during forced remote education during the pandemic. Teachers have learned to adopt technology as an essential role in evolving students’ learning. Communication channels and messaging apps have emerged to meet the needs of educators and their students, and one such platform is Discord. Initially developed as a social platform for gamers, Discord has become an essential tool for teachers looking for a more engaging and efficient communication method with their students. In this post, we will discuss the many features of Discord and how they can be leveraged in the classroom

Discord in the Classroom

Students at my university have already started utilizing various technologies, including Discord, for every course. However, concerns have arisen regarding the potential misuse of these platforms for academic dishonesty, such as coordinating cheating, seeking unauthorized help on assignments, and sharing exam questions. Despite these concerns, it is important to acknowledge the positive aspects of Discord as a tool for facilitating class discussions.

Compared to traditional email, Discord offers greater flexibility in communication. Email is typically one-directional and personal, which may limit its effectiveness in specific scenarios. For instance, if a student wishes to address the entire class or a teacher would like to avoid repeatedly answering the same questions from multiple students, Discord provides a more efficient platform. Additionally, using email as the primary mode of communication can inadvertently perpetuate biases, as teachers may unconsciously form prejudiced views based on students’ language use, which may be influenced by their cultural backgrounds rather than intentional rudeness (Danielewicz-Betz, 2013). Discord allows for anonymous communication, as students can choose nicknames instead of real names.

While the concerns regarding academic integrity on Discord should not be dismissed, it is important to recognize the potential benefits of utilizing such platforms for class discussions. By adopting a proactive approach and establishing clear guidelines and expectations for students, educators can harness the benefits of Discord while mitigating the risks associated with academic dishonesty. Educators should explore strategies to create a collaborative and inclusive digital environment that encourages meaningful interactions and knowledge sharing among students.

Discord Basic Features

Privacy, moderation, and safety are among Discord’s best features. Teachers can set up rules for behaviour, and the platform allows for monitoring and removing inappropriate content. Establishing community norms and guidelines helps create a safe and productive space for learning where students can comfortably share their thoughts and ideas. Many studies have shown that students’ perceptions of learning, satisfaction, student-to-student interactions, student-to-instructor interactions, and grades improve in a remote and anonymous learning environment (Sher, 2009; Mogus et al., 2012; Gray & DiLoreto, 2016).

Additionally, Discord offers an organized messaging system that allows for different channels for various courses, assignments, and discussions. Teachers can create individual channels for different activities or assignments, minimizing confusion and making it easier for students to find and access what they need. The platform also enables students to directly message each other for quick clarifications or reach out to their teachers, thereby improving student-teacher communication.

Discord’s voice and video call features make it easy for students and teachers to collaborate remotely. The screen-sharing feature is convenient during virtual classrooms (sharing screen) or group projects, and the voice chat promotes an engaging and active learning experience. Teachers can use the platform to host study groups, where students can engage in group discussions while working on assignments.

Furthermore, Discord’s customizable interface allows for creative expression, which can stimulate student engagement and participation. Teachers can customize emojis for positive feedback, and students can personalize their profiles according to their interests and personalities. Discord also allows teachers to integrate external web tools, such as Google Docs, links, and intranets, making it easier for students to access external resources.

The Basic Setup of a Classroom Server

To get started, you need to create a server on Discord. This server will serve as the central place to store channels and information. When setting up the server, choosing an appropriate structure is essential. An organized server structure will make it easier for students to navigate through the channels.

Channels in Discord are where discussions are grouped. They allow students to find specific information about a course activity or engage in conversations about a particular subject. I recommend creating a different channel for each assessment, discussion group, or activity in your classroom. For instance, you can have channels like “Assignment 1 Discussion,” “Assignment 2 Discussion,” “Tutorials,” “Group Project Meetup,” and “Office Hour.” It may also be helpful to set up a “General” channel where students can chat and get to know each other.

Roles in Discord group the users within your server. Roles can be used for dedicated communication with specific groups of people, such as teaching assistants in your classroom. Students can send direct messages to each other and those with predefined roles. For instance, a student can ask for clarification on an assignment by tagging the teaching assistants specifically. You can also assign limitations to created roles on the server. For example, you can create a “student-leader” role that has access to create new channels but does not have the ability to ban a specific member.

The Discord support site provides a useful template that sets up channels and roles and enables security features for a typical classroom. This template can be an excellent starting point for beginners on Discord.

Discord Extensibility

Discord bots can greatly enhance the classroom setup for more advanced users by automating administrative tasks, facilitating real-time interaction between students and teachers, providing customized instruction and feedback, and simplifying assignment delivery. They offer an excellent way to maintain engagement, collaboration, and interactive learning, while also keeping students engaged and attentive. Incorporating bots is a prime example of how technology can assist educators in delivering lessons effectively and achieving better student outcomes. Integrating Discord bots is one of the most effective methods for significantly improving the quality of teaching.

Discord bots are capable of efficiently handling various administrative tasks. They can facilitate polling, schedule events and moderate chat rooms. Bots can also help maintain organized and spam-free chat rooms and send students reminders about important dates. By utilizing bots, instructors can free up more time to focus on classroom activities. To invite a Discord bot to your server, use bot hosting sites like top.gg. Once invited, the bot will be installed on your classroom server. The following video demonstrates a basic setup of a classroom and the workflow for integrating Discord bots:

Tips for Encouraging Students to be Active Participants Online

Students are more likely to actively participate in online classes if the platform is safe, user-friendly, and easy to navigate. As a teacher, it’s essential to ensure that students have access to tutorials, guidelines, and support resources to help them navigate the platform easily. Encourage students to ask questions and be prepared to respond to their concerns. Additionally, assigning role colours can provide incentives for students who complete specific tasks. For example, you can create a role called “level-2-XP” and assign it a red colour on the server. This visual recognition can motivate students to engage more frequently.

Providing feedback is crucial in maintaining student engagement and fostering improvement on the platform. Regularly offer constructive feedback to students, highlighting their strengths and areas for improvement. It’s important to provide feedback positively and privately to avoid discouraging students from participating. This approach allows students to take ownership of their learning and motivates them to persist.

Engaging students by asking open-ended questions, facilitating discussions, and creating breakout rooms for group brainstorming is also important. Initiating discussions on topics beyond the scope of the class can help students feel a sense of safety and encourage their participation. Here are some examples of questions I have used in online discussion forums with great success:

  • Is social media more harmful or beneficial to society?
  • Who would win in a hypothetical fight (if they could ever meet), Batman or Spiderman?
  • Is it better to be an only child or have siblings? Why?
  • What is the best video game you’ve ever played?
  • What’s the best software ever written?

Digital Citizenship Warnings and Recommendations

While Discord offers many valuable features for teachers, it is important to prioritize rules for proper digital citizenship. Due to uncertainties regarding data storage, academic assessments should not be conducted on Discord. Additionally, personal conversations about grades should not be discussed. It is essential to treat Discord as a public sandbox where you interact with your students and remain accessible at all times. Furthermore, it is crucial to comply with student privacy laws specific to your institution or country and refrain from exceeding those regulations.

One of the main concerns associated with Discord is the potential for distractions. The platform provides various features, such as chat rooms, voice channels, and direct messaging, which can easily divert students’ focus away from educational activities. Anonymity among users raises privacy and safety concerns, as interactions with unknown individuals can occur on Discord. As an educator, you must establish clear guidelines and expectations regarding appropriate behaviour and usage to address these risks. Posting the rules and regulations in the server’s description, promoting responsible digital citizenship, teaching students about respectful communication, and discouraging the posting of disinformation or rumours are necessary steps. Creating private and moderated channels, educating students about online safety in the classroom, and regularly monitoring the platform are additional measures to ensure a positive and secure learning environment.

References

Danielewicz-Betz, A. (2013). (Mis)Use of Email in Student-Faculty Interaction: Implications for University Instruction in Germany, Saudi Arabia, and Japan. JALT CALL Journal9(1), 23–57. https://eric.ed.gov/?id=EJ1107960

Sher, A. (2009). Assessing the relationship of student-instructor and student-student interaction to student learning and satisfaction in Web-based Online Learning Environment. Journal of Interactive Online Learning Www.ncolr.org/Jiol8(2). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7810cfba73c549ffc94437375b9e6e8f84336af5

Mogus, A. M., Djurdjevic, I., & Suvak, N. (2012). The impact of student activity in a virtual learning environment on their final mark. Active Learning in Higher Education13(3), 177–189. https://doi.org/10.1177/1469787412452985

Gray, J. A., & DiLoreto, M. (2016). The Effects of Student Engagement, Student Satisfaction, and Perceived Learning in Online Learning Environments. International Journal of Educational Leadership Preparation11(1). https://eric.ed.gov/?id=EJ1103654