Reflecting on a Study of Competitive Programming and Cultural Inclusion

Length of Study

The study is designed to take place over two academic terms, which provides adequate time to collect meaningful data. The inclusion of an initial summer term without competitive programming establishes a baseline for comparison. The second summer term incorporates competitive programming using standardized questions, allowing assessment of this pedagogical approach. The fall term offering adds the dimension of culturally relevant questions, enabling analysis of their impact. Extending the study over multiple terms enables more robust data collection and analysis.

Promoting Active and Engaged Learning

The core content is delivered through weekly lectures focused on programming concepts. The competitive programming contests complement the lectures by providing opportunities to practice applying concepts. Weekly competitive programming contests foster active learning in several key ways. Students must apply conceptual knowledge to solve concrete programming problems. This process reinforces their understanding and helps identify knowledge gaps. The contest format adds an engaging gamification element through scoring, feedback, and peer comparison. Using standardized questions initially assesses whether baseline content needs are being met.

Introducing culturally relevant questions aims to promote better integration of concepts by relating them to students’ cultural knowledge and experiences. Having students co-create contest questions in the fall term further activates learning. They must think critically to develop culturally relevant problems that integrate with the content. This approach promotes deeper engagement with the material and encourages collaboration with classmates, allowing students to take ownership of their learning.

Addressing Teachers’ Needs

The study aims to provide teachers with insight into using competitive programming and culturally relevant pedagogy. The data collected will help determine the effectiveness of these approaches in an international educational setting. Instructors will gain an understanding of how competitive programming engages students versus standardized practice problems. They will also see whether student-created culturally relevant questions increase participation and motivation. The study addresses teachers’ needs for effective and inclusive instructional strategies. They will gain practical knowledge from the comparative data on different contest designs.

Promoting Collaborative Participation

Collaboration is encouraged through the group development of culturally relevant contest questions. Students can brainstorm and build on each other’s ideas, which fosters teamwork. Producing questions from diverse cultural perspectives requires working together. Students are also given the choice of problem-solving in teams. Students can motivate each other and strategize in groups for the competitions. Their scores are tracked on a collective leaderboard which reinforces the collaborative element. The shift from individual to team contest creation necessitates and enables productive collaboration.

The multi-term study design, interactive contest format, customized problems, and collaborative elements demonstrate an interesting pedagogical approach that promotes engaged and inclusive learning. The results should provide valuable insights for computer science educators.

Culturally Responsive Computing Approaches

Introduction

Culturally responsive computing (CRC) is an approach to designing technology education programs and tools that responds to the cultural contexts of learners and represents an intersection between computer science, education, and sociocultural understanding. It has roots in the extensive and well-studied area of culturally responsive teaching (CRT), which argues that empowering diverse students requires building on the cultural assets they bring to the classroom. CRC translates fundamental principles of CRT to computer science education and ensures that the cultural experiences of learners, particularly those from underrepresented groups, are valued and used to enhance their learning experience. In this blog post, I will uncover some examples of research that has established the critical role CRC plays in promoting inclusion, diversity, and equity in the computer science classroom.

History of CRC

Foundational concepts for CRC were established between the early and mid-1990s. Henderson (1996) argued that instructional design models for teaching technology must consider diverse learners’ cultural orientations. Henderson proposed the Multiple Cultural Model for instructional design, which sheds light on the various dimensions that influence how diverse cultural groups interact with multimedia learning environments. For instance, some cultures might lean towards cooperative learning, while others favour competition.

In 1999, McLoughlin outlined features necessary for culturally appropriate online learning for Indigenous Australian students, emphasizing participatory tasks and problem-based dialogue. Subsequently, Lee (2003) presented a framework designed to ensure that computing tools and environments respond effectively to the prior knowledge, perspectives, and motivations of minority learners. This framework was shown through software that facilitated literacy development among African American students, thereby demonstrating the effectiveness of this approach.

Limitations of the CRC Framework

Drawing on their programs, Scott, Sheridan, and Clark (2014) implemented their unique CRC programs, critiquing the limitations of traditional asset-based approaches and advocating for direct cultural responsiveness. Their arguments highlighted the following points:

  1. All youth possess the capability for digital innovation, thereby challenging deficit perspectives.
  2. Learning environments should promote transformational uses of technology.
  3. Paying attention to intersectional identities can foster innovation in computing.
  4. Students should utilize technology to reflect on their complex identities.
  5. Success should be defined by creating for community benefit rather than merely acquiring skills.

They provided examples such as critiquing biased media representations and encouraging students to create media that affirmed their identities. The implications of their arguments include the need to revise methods and measures, conduct intersectional research, and promote collaboration between computer experts and communities. CRC can potentially address digital equity through innovation, especially when implementations consider students’ multifaceted identities.

Culturally Responsive Computing Tools

Reflecting on these limitations, Morales-Chicas et al. (2019) conducted a comprehensive study on the tools and strategies employed in K-12 computing education for CRC. They identified the following emergent themes:

The first was sociopolitical consciousness-raising, which pertains to lessons that address real-world issues and promote activism. For example, COMPUGIRLS is a CRC program for adolescent girls of colour from underserved communities. Drawing on principles of culturally responsive teaching, including asset building, connectedness, and reflection, the program equips girls with the technological skills needed to research and address community issues. Participants reported increased confidence, the development of identities as technology innovators, and a feeling of empowerment from creating projects that address social justice issues.

Another theme is incorporating heritage culture through artifacts, like designs and symbols. Examples include programs encouraging student-created media to challenge stereotypes and software that builds on cultural practices, such as hair braiding patterns (Eglash & Bennett, 2009). This builds community connections, which involve community members sharing cultural knowledge and motivating students to engage actively.

Vernacular culture employs local cultural practices that are relevant to students. An example is the American Distributed Multiple Learning Styles Systems (AADMLSS), a programming tool designed to engage African American students using math and characters representing their vernacular culture. Studies have shown a surge in youth engagement due to the high cultural relevance of this approach.

Lastly, the theme of lived experiences connects to students’ identities and real-world contexts. For instance, Scott & White (2013) argued that CRC should consider students’ lived experiences and encourage self-representation, evidenced by a youth exercise in COMPUGIRLS on identifying gender biases in avatar creation. Also, by introducing personalized elements into a course, students can analyze this aspect of the computing experience critically, further enabling the customization of computing projects.

Conclusions

Studies have scrutinized the implications of the developments in CRC. For assessment, this necessitates a move beyond narrow measures such as grades or test scores to capture complex identity outcomes (Scott & White, 2013). From a methodological perspective, it requires attention to intersectionality, considering how factors such as race, gender, and class shape technology experiences (Scott, Sheridan & Clark, 2014), more research is required to understand its effects on diverse populations and domains. In practice, CRC should adopt a multi-disciplinary stance, adopting collaboration between communities, social scientists, and computer scientists (Eglash et al., 2013).

Therefore, we call on computer science educators, tech companies, and community organizations to take the following actions:

  • Allow greater curriculum flexibility for CS instructors to adapt courses to their students’ cultures and identities, to discover the intersects for each student.
  • Develop alternative metrics focused on identity development, community impact, and equitable outcomes to complement skills-based measures.
  • Increase engagement of families and communities as partners in developing computing programs.
  • To exchange knowledge, Foster collaboration (through incentives) between tech companies, social scientists, and CS educators.

References

McLoughlin, C. (1999). Culturally responsive technology use: developing an on‐line community of learners. British Journal of Educational Technology30(3), 231–243. https://doi.org/10.1111/1467-8535.00112

Lee, C. D. (2003). Toward A Framework for Culturally Responsive Design in Multimedia Computer Environments: Cultural Modeling as a Case. Mind, Culture, and Activity10(1), 42–61. https://doi.org/10.1207/s15327884mca1001_05

Henderson, L. (1996). Instructional design of interactive multimedia: A cultural critique. Educational Technology Research and Development44(4), 85–104. https://doi.org/10.1007/bf02299823

Morales-Chicas, J., Castillo, M., Bernal, I., Ramos, P., & Guzman, B. (2019). Computing with Relevance and Purpose: A Review of Culturally Relevant Education in Computing. International Journal of Multicultural Education21(1), 125. https://doi.org/10.18251/ijme.v21i1.1745

Eglash, R., & Bennett, A. (2009). Teaching with Hidden Capital: Agency in Children’s Computational Explorations of Cornrow Hairstyles. Children, Youth and Environments19(1), 58–73. https://doi.org/10.1353/cye.2009.0024

Scott, K. A., & White, M. A. (2013). COMPUGIRLS’ Standpoint. Urban Education48(5), 657–681. https://doi.org/10.1177/0042085913491219

Scott, K. A., Sheridan, K. M., & Clark, K. (2014). Culturally responsive computing: a theory revisited. Learning, Media and Technology40(4), 412–436. https://doi.org/10.1080/17439884.2014.924966

Incorporating Competitive Programming into a Beginner Programming Course

Introduction

Driven by the increasing automation and digitalization of virtually every workflow, programming has become an indispensable part of our lives. As a result, introducing programming at the earliest stage of education has become a hot topic of discussion among educators and academics alike.

A particular area of interest is the concept of competitive programming (CP). Long viewed as a niche domain, a small group of enthusiasts often pursue CP to challenge their coding capabilities; many faculty have challenged the area as an unnecessary part of computer science. However, recent research underscores the potential of competitive programming as a useful pedagogical tool, especially in the context of introductory programming courses. This blog post will discuss the results of various studies that have been conducted on incorporating CP into a beginner’s programming course. I’ll review existing studies on integrating CP into intro-level programming courses, examining its effects on learning outcomes, student engagement, and skill acquisition. In addition, I will also propose some areas of CP that require further research.

Understanding Competitive Programming

Competitive programming is a mind sport, like chess and bridge, that involves participants competing to solve algorithmic problems as quickly and efficiently as possible. The ACM ICPC (Association for Computing Machinery – International Collegiate Programming Contest) is one of the world’s oldest, largest, and most prestigious programming contests, which started in the 1970s. Today, it has grown to involve tens of thousands of participants, attracting the world’s top Computer Science universities.

Several elements define each problem in the contest. First, there’s a problem statement describing the issue the team needs to solve. Next are the input and output specifications, which explain the type of data the team’s program should accept and produce. Thirdly, sample inputs and outputs are given to help the team understand the problem. Finally, constraints are provided to outline the maximum size or other limitations of the inputs and the required efficiency of the solution.

The contest is scored based on the number of problems solved and the time penalty. The number of problems solved is the most critical factor; the more problems a team solves, the higher their rank will be. Teams are primarily ranked by the number of problems they have solved. To break ties among teams who have solved the same number of problems, the ICPC uses a time penalty calculated from the beginning of the contest to the time of the first correct submission, with an additional penalty added for each incorrect submission. The team with the shortest total time is ranked highest.

The Impact of Competitive Programming on Beginners

Studies such as those conducted by Moreno et al. (2018) and Bandeira et al. (2019) employed this scoring system and contest setup to engage first-year students in programming classes. Both studies found that students introduced to competitive programming in their first year demonstrated a superior understanding of programming principles compared to those who did not. These students exhibited faster problem-solving abilities, improved code efficiency, and an increased capacity to work under pressure. Additionally, these students reported higher retention of material and reduced difficulty in grasping programming concepts.

However, not all studies concluded that CP led to improved performance. Coore and Fokum (2019), facing a lack of teaching assistants and quality feedback in first-year programming courses, employed a system of weekly competitive programming competitions to reinforce the week’s material. Their study found that while using competitive programming in assessments did increase student engagement and interest, it did not enhance the overall performance of the first-year students.

The Challenges

While CP introduces students to the rigours and excitement of coding under constraints, it’s important to recognize that CP cannot address every aspect of introductory programming. Also, certain facets of CP, such as its pace and competitive element, may only suit some learners.

Astrachan (2004) has pointed out that competitive programming only allows students to delve into key areas such as Object-Oriented Programming (OOP) design principles and enhancing code quality. CP emphasizes speed and efficiency, often overlooking the importance of well-structured, maintainable code, a crucial aspect in real-world development.

While competitive programming can inject a sense of competition into the classroom, it’s important to remember that it’s not a one-size-fits-all solution. The competitive aspect of CP may be intimidating for some students, leading to heightened anxiety and stress. This could, in turn, hinder learning and deter participation. Moreover, the pace of competitive programming, which requires swift comprehension of problem statements and speedy code implementation, may only cater to some learning styles. Some students may require more time to thoroughly grasp concepts and develop robust solutions, which could make the fast-paced environment of CP feel overwhelming.

Given these characteristics of CP, it’s clear that it should not be used as the sole determinant in course assessments. Relying too heavily on CP for grading could inadvertently favour students who possess abilities unrelated to computer science, such as high reading speed and fast typing. These intangibles can be advantageous in a competitive programming environment but have little relevance to a student’s understanding of computer science principles or their potential as a programmer.

Future of Competitive Programming in Classrooms

Although much research has been done involving introducing competitive programming into the classroom, little work explores the impact of cultural relevance in problem-setting, the role of artificial intelligence (AI) in integrating CP, and how CP interacts with various cultural and social intersections in the academic sphere.

The classroom is often characterized by a variety of cultural and social intersections. Incorporating CP in such a setting prompts us to consider how it might affect the likeability, acceptability, and academic performance across these intersections. Is CP equally appealing and accessible to students of different cultures, genders, or social backgrounds? How might the competitive nature of CP impact the dynamics of these intersections? Delving into these questions would allow us to devise strategies to ensure a more equitable and inclusive learning environment.

A unique feature of competitive programming is its creative liberty in problem-setting. This opens the possibility of integrating culturally relevant problems. Introducing programming problems referencing students’ home countries or cultures could make the learning experience more relatable and be a powerful tool to increase engagement among international students. However, the impact of such an approach is yet to be fully understood. How might culturally sensitive problems influence students’ interest and engagement? Could they enhance learning outcomes, or could they unintentionally alienate students who do not share the same cultural background?

Artificial Intelligence offers exciting possibilities in CP. For instance, large language models such as ChatGPT can assist in problem setting, which is typically a significant demand on an instructor’s time. AI-based tools could also serve as programming partners for first-year students, providing personalized assistance such as debugging help or hints for specific problems during a contest. This could supplement the responses from auto-grading judges, which is currently limited to categorized feedback that can sometimes be vague. This approach increases access to individualized learning support and mitigates common challenges associated with competitive programming, such as anxiety and intimidation. However, areas that require further exploration include the effectiveness of such tools and the best strategies for integrating them into the learning experience.

References

Moreno, J., & Pineda, A. F. (2018). Competitive programming and gamification as strategy to engage students in computer science courses. Revista ESPACIOS39(35).

Bandeira, I. N., Machado, T. V., Dullens, V. F., & Canedo, E. D. (2019, October 1). Competitive programming: A teaching methodology analysis applied to first-year programming classes. IEEE Xplore. https://doi.org/10.1109/FIE43999.2019.9028518

Astrachan, O. (2004). Non-competitive programming contest problems as the basis for just-in-time teaching. https://doi.org/10.1109/fie.2004.1408553

Coore, D., & Fokum, D. (2019). Facilitating Course Assessment with a Competitive Programming Platform. Proceedings of the 50th ACM Technical Symposium on Computer Science Education. https://doi.org/10.1145/3287324.3287511

Computer Science Curriculum Integration for K-9 Teachers

Introduction

With a rapidly advancing world and integrating more technology into life, it has increasingly become evident to parents, teachers, and students alike that technological literacy is essential to primary education. Parents are pushing for increased computer science instruction in elementary schools as they realize how vital this knowledge will be in preparing their children for success beyond grade school.  According to code.org (Computer Science Education Stats, n.d.), 90% of parents want their children to study computer science, but only 53% of high schools offer it in their curriculum. Research has also shown that students who take computer science courses in high school are 17% more likely to pursue higher education, with even higher percentages observed among traditionally marginalized populations such as females and Black and Latino students (Brown & Brown, n.d.).

While computer science courses provide fundamental skills like coding and web design, their significance extends far beyond that. Understanding technology equips students with data analysis capabilities and problem-solving skills applicable across various fields, extending beyond digital work environments. Consequently, many believe it is crucial to prioritize teaching computer science concepts. This post outlines my efforts to understand the computer science curriculum’s current needs and promote computer science education among elementary school teachers in British Columbia.

Assessing Current Needs

According to Dr. Shannon Thissen, Regional Administrator for Educational Technology and Computer Science Teaching and Learning in Capital Region ESD 113 in Washington, integrating computer science concepts into the curriculum poses significant challenges. Dr. Thissen mentions that many untrained teachers express concerns and seek guidance. The primary obstacle is teachers’ fear of the unknown, and overcoming this fear is crucial. Several programs, including those offered by code.org, provide free resources for teachers. However, the participation of schools in these programs in British Columbia remains limited. Dr. Thissen also highlights that teachers may hesitate to incorporate such programs into their curriculum if they are not mandated.

In a previous post, I discussed the inconsistency of computer science programs in grade schools across British Columbia, particularly emphasizing the needs of interior and rural areas. While I faced difficulties connecting with schools that desired my services, I recently connected with a Programming 11/12 teacher in Kamloops. I had the opportunity to speak to her class, providing valuable insights into the needs of both teachers and students. Students showed great interest in game development and 3D animation. Despite being a beginner-level class, students had diverse backgrounds in the subject, with some having significant experience with Unity while others struggled with the early stages of block programming. However, their shared enthusiasm for the subject validated studies showing that a majority of students enjoy computer science (Computer Science Education Stats, n.d.). This highlights the need for increased promotion of computer science in the earlier grades to nurture this enjoyment.

Currently, I am collaborating with John Knox Christian School, which is revamping its computer science and technology curriculum. Working with the Director of Curriculum and Computer Science, we are developing a series of workshops to assist K-9 teachers in integrating computer science into their classrooms. This collaboration is an excellent opportunity as John Knox controls its curriculum from K-12, enabling longer-term assessment of student success through the workshops with the same group of students.

Project Design

The central portion of the project is divided into four phases: Assessing Needs, Planning and Foundations, Integration, and Reflection.

Assessing Needs:

To ensure alignment with the school’s desired outcomes and address the specific needs of K-9 teachers, a survey will be created and distributed to all K-9 teachers. The survey aims to gather information on teachers’ objectives, knowledge levels, and areas of interest in computer science. The survey includes choices for dedicated topics such as programming, computational thinking, artificial intelligence, game development, and computer hardware. The project will tailor its objectives and content to meet the needs and interests of the teachers. The survey will be sent out during the first week of summer break.

Planning and Foundations:

This phase involves conducting a workshop covering computer science fundamentals, including vocabulary, problem-solving, and demystifying computer science. The workshop will also focus on integrating hands-on activities for teachers to experience and practice computer science concepts firsthand. Teachers will be guided in designing activities that promote problem-solving, collaboration, and critical thinking skills. Additionally, resources such as coding platforms, educational apps, and lesson plans will be provided to support teachers in implementing computer science activities beyond the workshop. By the end of the workshop, teachers should have a plan to incorporate computer science concepts into an existing lesson. This workshop is scheduled for the first professional development day in September 2023.

Integration:

Teachers will execute their plans to integrate computer science concepts into the classroom during the integration stage. One strategy for this stage is to have coaches co-teach a computer science lesson alongside the classroom teacher. Initially, the director and I will act as coaches, but the plan is to train coaches for future iterations. Co-teaching allows the teacher to observe and learn from the coach’s expertise and experience, helping teachers gain confidence and deepen their understanding. The coach can help guide students through hands-on activities and will provide positive reinforcement, celebrate teachers’ achievements, and acknowledge their efforts in integrating computer science concepts. In addition to co-teaching, coaches will observe regularly and provide teachers with constructive feedback. Classroom observations, either in person or through video recordings, will be conducted to assess the implementation of computer science lessons and the effectiveness of teaching strategies. Coaches will then provide feedback, highlighting strengths and offering suggestions for improvement. This feedback loop will enable teachers to reflect on their practice, refine their instructional techniques, and make continuous progress in integrating computer science effectively.

Reflection:

Integration is ongoing, and teachers require continued support beyond the initial stages. Follow-up meetings, workshops, or online forums will be organized to facilitate knowledge sharing, questions, and further guidance. These support mechanisms will help sustain the momentum and provide teachers with ongoing professional development and collaboration opportunities. Coaches will curate and share relevant resources, including lesson plans, coding activities, and best practices, to further support teachers’ integration efforts. This stage is scheduled for the third professional development day in November 2023.

Analyzing the Design

Using Adria Steinberg’s (1998) six A’s of evaluating project design, my proposed project aligns with these principles, ensuring the successful integration of CS into K-9 classrooms.

Academic Rigor: The project emphasizes challenging and intellectually stimulating CS content. It provides opportunities for students to engage in practical problem-solving, critical thinking, and analytical reasoning. The project also encourages teachers to adopt a different mindset when teaching CS.

Authenticity: The project provides real-world contexts and experiences that connect CS concepts to students’ lives and interests. It includes relating CS to authentic scenarios, which enhances student motivation and engagement in other subjects. By establishing these connections, the project makes CS more relevant and meaningful to students.

Applied Learning: The project emphasizes the hands-on application of CS knowledge and skills. It encourages teachers to apply CS-related skills to different activities in the classroom. This approach allows students to experiment, problem-solve, and apply CS principles in real-world contexts.

Active Exploration: The project encourages students to explore CS concepts through inquiry-based and self-reflective learning. It creates an environment that nurtures teachers’ and students’ curiosity, exploration, and independent thinking; this fosters a sense of ownership in their CS learning journeys.

Adult Relationships: The project recognizes the importance of fostering supportive and meaningful connections between students and adult mentors or educators. By incorporating coaches or mentors into the framework, the project provides students (and teachers) opportunities to interact with CS professionals, experts, or mentors. These interactions offer guidance, share real-world experiences, and serve as role models for students.

Assessment: The project includes an assessment plan to evaluate student learning and program effectiveness. It incorporates post-integration surveys and other assessment strategies to measure the impact of CS integration on student learning outcomes. Gathering feedback from stakeholders informs program improvements and ensures ongoing effectiveness.

Next Steps:

To effectively integrate computer science into K-9 classrooms, conducting one or two workshop iterations is needed. This allows for refinement and improvement of the workshop content and delivery based on feedback and insights from the initial sessions. During each iteration, it is important to collect feedback from participating teachers. Assessing the teachers’ comfort levels with integrating computer science concepts and their perceived efficacy in implementing the learned strategies in their classrooms will help gauge the workshop’s effectiveness. Additionally, student learning outcomes can be evaluated through pre- and post-workshop assessments to measure students’ knowledge growth, skills development, and attitude toward computer science. Comparing these assessments will provide evidence of the workshop’s impact on student learning.

Once the initial iterations of the workshop have been conducted and evaluated, the next step is to engage rural area schools with a more concrete plan. Building on the lessons learned and feedback from the initial workshops, it is essential to develop a targeted approach specifically tailored to the needs and challenges of rural schools. Further changes to the workshop may include solutions to overcome unique barriers such as limited resources, infrastructure challenges, or teacher training opportunities. Designing the workshop to accommodate these conditions will increase its relevance and effectiveness in rural settings.

If the workshop successfully enhances teacher comfort levels and promotes student learning, developing a Professional Development Program (PDP) at the university is an excellent opportunity. A PDP would offer a more structured and comprehensive training program for teachers seeking to integrate computer science into their K-9 classrooms. The Education Department can collaborate with the School of Computing Science and instructional design experts to design a robust PDP curriculum. This curriculum should address the specific needs of teachers, providing them with theoretical knowledge, practical skills, and ongoing support to integrate computer science concepts into their classrooms effectively.

References

Computer Science Education Stats. (n.d.). Code.org. https://code.org/promote/stats

Brown, E., & Brown, R. (n.d.). The Effect of Advanced Placement Computer Science Course Taking on College Enrollment. http://www.westcoastanalytics.com/uploads/6/9/6/7/69675515/longitudinal_study_-_combined_report_final_3_10_20__jgq_.pdf

CS Journeys Resources: Mentorship and community. (n.d.). Code.org. Retrieved June 3, 2023, from https://code.org/beyond/mentors-and-community

Steinberg, A. (1998). Real learning, real work : school-to-work as high school reform. Routledge.

K–12 Computer Science Framework. (n.d.). K12cs.org. https://k12cs.org/

Computer Science Curriculum in B.C.

Introduction

As an instructor of computer science at Simon Fraser University, one of my roles involves assessing the level of computer science knowledge possessed by high school graduates and the ease of their transition into higher education. These assessments help the school to evaluate the adequacy of our university’s introductory computer science courses. Unfortunately, we have observed that a considerable number of students are struggling with our first-year programming courses.

In this article, I will explore the recommendations made by the British Columbia government regarding the computer science field in grade schools. Specifically, I will investigate how these recommendations are being implemented in schools across the Lower Mainland and evaluate whether they are effective in preparing students for university-level computer science coursework. By doing this, I hope to shed light on the current state of computer science education in our region and make recommendations for improving the preparation of students for university-level computer science coursework.

Computer Science Curriculum Recommendations in K-12 Schools

There are two ways to incorporate CS concepts into a grade’s curriculum: as an entire course or as an integration of existing materials. A common misconception about computer science is that it has a bi-conditional relationship with coding, that they are one and the same. In fact, a well-designed curriculum must also include critical thinking, problem-solving, teamwork, communication skills, technical writing skills, and testing methodologies, among other vital skills. Successful implementation of a computer science curriculum not only contains coding but also equips students with other diverse tools for their future careers.

The BC government website (https://curriculum.gov.bc.ca/curriculum/adst) recommends that students from kindergarten to grade 3 are introduced to computer science basics, such as algorithms, sequencing, and problem-solving concepts, through interactive, “non-computer” activities. In grades 4-5, students move on to learn about block-based programming, granting them an entry into coding and the ability to create interactive digital media. In grades 6-7, students now apply their computational thinking skills to solve real-world problems using charts, lists, diagrams, and arrays with an introduction to computer architecture and hardware, responsible computer use, and visual programming. Finally, in grades 8-9, students learn about basic software instructions with algorithms that others can repeat, debugging algorithms, elementary modularization, binary data representation and programming languages, including visual programming.

In Grade 10, students will delve into topics such as security risks, debugging, networking, social implications, digital literacy and citizenship, and planning and writing simple programs (including games). In a separate course, it is recommended that students explore Computer Applications that center on understanding the importance of user experience. computer hardware, peripherals, internal and external components, standards, intermediate features of business applications, including word processing, spreadsheets, and presentations, operating system shortcuts and command line operations.

In addition, the B.C. government recommends a Web Development 10-course covering design opportunities, HTML and CSS, domain and hosting, copyright laws and Creative Commons usage protocols, ethics of cultural appropriation, security and privacy, and database management. While some of these areas may appear outdated, they still offer a solid understanding of web standards and communications.

In grades 11-12, students can enroll in Computer Programming 11 and 12, where they will learn various programming skills. These skills include the design cycle, error handling, debugging, problem decomposition, reading and altering code, pair programming, programming constructs such as input/output, conditions, and loops, algorithm design, functions, classes, pre-built libraries and their documentation, inline commenting to document source code, use of test cases to detect logical or semantic errors and software ethics.

In general, the suggested curriculum appears to be quite ambitious, and I have concerns about the extent and practicality of the material taught in the classroom. Several of the topics covered are typically introduced in second-level programming courses at the university level. If the high school curriculum can provide a sufficient depth of understanding, it would establish a strong foundation for many students, enabling them to tackle more advanced computer science courses without difficulty.

CS Curriculum implementations

Code.org (https://studio.code.org/courses?view=teacher) is the leading resource for computer science education, offering an excellent and well-designed curriculum to introduce students to computer science at all grade levels.

For elementary school students (grades K-5), Code.org provides CS Fundamentals. This program includes “unplugged” non-computer activities to teach computational thinking, problem solving, programming concepts, and digital citizenship.

The middle school (grades 6-8) curriculum, known as Computer Science Discoveries, builds upon the elementary school program by introducing students to more advanced concepts at an intermediate level. These include web development, communication, and problem-solving.

For high school students (grades 9-12), Code.org offers more specialized courses in computer science for students who wish to dive deeper into the subject. These include physical computing, big data, privacy, and algorithms, and advanced placement (AP) courses in Java for more advanced students.

Code.org also offers professional development courses for educators to help them effectively teach computer science. The curriculum and courses provided by Code.org are designed to help students develop computational thinking and coding skills while broadening their understanding of computer science.

Out of the 37 public high schools in Burnaby, Surrey, and New Westminster, only 4 schools use code.org as a guide, and these schools are all associated with the Advanced Placement (AP) programs. These numbers suggest that schools are aware of the usefulness of code.org materials but need more staff to implement the courses. There needs to be a standardized curriculum across these schools.

For example, the Burnaby High School website describes Computer Science 10-12 as “an introductory programming course for students with no experience.  Learn to create video games for your phone, tablet, computer, or the web.” This description is very vague and suggests that these courses do not come close to implementing the recommendations set out by the B.C. government. Other schools in Burnaby do not even offer Computer Science 11/12 courses. In contrast, New Westminster Secondary offers Computer Programming 11/12, which fully implements the government’s recommendations and more. These courses should be AP courses, depending on the depth of coverage. The difference in offerings between the two school districts is concerning for students entering higher education computer science studies as it may result in significant differences in programming knowledge.

I attempted to reach out to over 20 Computer Science teachers from different schools in the New Westminster and Burnaby areas, but unfortunately, I did not receive any responses from them. Unfortunately, there is a lack of motivation and interest in enhancing their teaching methods in CS courses. In a recent conversation with Shannon Thissen, the Regional Administrator of Educational Technology and Computer Science in Capital Region ESD 113, she confirmed that this is a common issue in all communities. She suggested that CS mentorship and coaching could alleviate teachers’ fears and uncertainties about teaching the subject.

Conclusion

The BC government’s and code.org’s recommendations for computer science education are ambitious but achievable. Higher education instructors and industry leaders should collaborate with high school teachers to strengthen and standardize the various tools and workflows currently taught in the CS curriculum.

In subsequent posts on this topic, I plan to explore various initiatives and reach out to more teachers throughout BC to gather more specific information on the curriculum and materials being taught in classrooms. Additionally, I aim to investigate the differences in implementing CS 10, 11, and 12 courses in schools across BC. It would also be interesting to compare the needs of schools in the lower mainland, which are primarily middle to upper-middle class, with those in interior communities. By doing so, we can determine if there is a significant discrepancy in the quality of computer science education and explore potential solutions to bridge the gap.